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Abstract

Many companies make use of customer service chats to help
the customer and try to solve their problem. However, cus-
tomer service data is confidential and as such, cannot easily be
shared in the research community. This also implies that these
data are rarely labeled, making it difficult to take advantage
of it with machine learning methods. In this paper we present
the first work on a customer’s problem status prediction and
identification of problematic conversations. Given very small
subsets of labeled textual conversations and unlabeled ones,
we propose a semi-supervised framework dedicated to cus-
tomer service data leveraging speaker role information to adapt
the model to the domain and the task using a two-step pro-
cess. Our framework, Task-Adaptive Fine-tuning, goes from
predicting customer satisfaction to identifying the status of
the customer’s problem, with the latter being the main objec-
tive of the multi-task setting. It outperforms recent inductive
semi-supervised approaches on this novel task while only
considering a relatively low number of parameters to train
on during the final target task. We believe it can not only
serve models dedicated to customer service but also to any
other application making use of confidential conversational
data where labeled sets are rare. Source code is available at
https://gguibon.github.io/taft

1 Introduction
Customer service is a crucial matter for companies (cus-
tomer satisfaction, etc.) and academics (better understanding
of dyadic conversations); however, customer service soft-
ware clients require better handling. Indeed, customer ser-
vice holds many obstacles, such as non publicly available
data, huge annotation cost, confidentiality issues on several
levels, and so on. This also implies multiple levels of analy-
sis: conversation level, and utterance level. While this dual
level of analysis has only been recently tackled in the litera-
ture (Yang et al. 2022), a conversation-level label has never
been considered as a prediction target in this context. Studies
focus mainly on predicting utterance-level labels (Zadeh et al.
2018a,b; Hazarika et al. 2018; Majumder et al. 2019). In
this work, we consider both levels of conversational analysis,
as our main purpose is to detect problematic conversations.
To do so, we place ourselves in the use-case of a company
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with customer service chats, which implies that available
data is scarce, confidential, and thus difficult to label – not to
mention, costly. In this context, we investigate the best way
to adapt an existing model to two multi-class classification
tasks: predict the customer satisfaction, and predict the status
of the customer problem, which are both conversation-level
labels. For the former, we consider a representation of cus-
tomer satisfaction as discrete polarity labels. For the latter,
we consider the status of the problem as 5 possible values:
aborted, problem solved, solution to be tested, problem out-
of-scope or no solution available. As far as we know, this
work is the first on customer problem status identification,
even more in the context of customer service. We make the
hypothesis that automatically predicting complex labels such
as the status of a problem is feasible, even with a very small
quantity of data.

In order to study this use-case, we use confidential cus-
tomer service data that we annotated. Indeed, as far as we
know, there is no publicly available dataset which contains
a two-level annotation scheme in customer service chats,
and no dataset containing status of problem resolution as la-
bels. A real dedicated dataset is thus mandatory, even though
it is confidential. The context of customer service implies
that only a few conversations are available, and even fewer
could be labeled, due to confidentiality. We decide to tackle
this joint issue by using semi-supervised learning. The most
fitting existing method in the literature seems to be domain-
adaptive pre-training (Konlea and Jannidisa 2020; Wu et al.
2021), which consists in adapting an existing pre-trained lan-
guage model to a new domain by continuing training with
the Masked Language Model objective on new data. How-
ever, we suspect our data to be too scarce for this, and we
propose a method to apply semi-supervised learning to adapt
an existing, pre-trained language model by using a substitute,
simple task, which does not imply any additional labeling
cost. In the context of customer service, we choose to use
speaker role information, which is almost always available.
By doing so, we want to verify that trying to predict simple
information already embedded in the structure of the data is a
reliable way to replace predicting missing words, i.e masked
language modelling. Secondly, in order to tackle these two
classification tasks, we experiment with multi-task learning.
Our approach lies on using a supplementary adaptive layer,
which we will use to transition from our adaptive task of



identifying the speaker role, to our final tasks, giving overall
a more malleable model and a faster fine-tuning.

Our contribution is three-fold. First, we present the first
work on problem status identification for customer service
conversations. Second, we apply a novel semi-supervised
learning approach, leveraging available information, embed-
ded in the structure of the data, to fine tune an existing pre-
trained language model. Third, we apply a multi-task learning
objective to better solve our two different, but related final
tasks: predict customer satisfaction and predict the status of
the customer problem. We believe this work can be useful
for many real use-cases in customer service, especially when
labels are complex and data is scarce. Finally, our approach is
not restricted to predict satisfaction or problem related labels,
but can be applied to other kinds of labels in a similar context.

2 Related Work
Customer Satisfaction and Customer Service. While a
recent work looks at customer satisfaction through customer
engagement on tweets (Liu, Shin, and Burns 2021), another
recent approach represent the customer satisfaction as a Net
Promoter Score (Piris and Gay 2021) (NPS) in the Orange
company’s Customer Service contact center logs using cus-
tomer surveys on ∼80,000 conversations to predict the NPS
score. They obtained a macro f1-score of 53.8 using a CNN
on a binary classification task and 48.3 on a 3-label classifi-
cation task. They showed it is best to take into account both
customer and agent turns than to isolate them (Auguste et al.
2019). Other works used a mix of regular expression, seman-
tics, sentence similarity and other approaches to consider
the customer satisfaction through question answering (Gong
et al. 2019). A more classical approach consisted in using
VADER (Hutto and Gilbert 2014) to extract the sentiment
score on 170k Samsung Chat Logs in USA, and then apply-
ing SVM, logistic regression and random forest to predict the
customer’s satisfaction (Park et al. 2015). They used a 5-scale
satisfaction and obtained a high accuracy (0.84) but a low
f1-score (0.39). Following this work and still using Samsung
chat logs, satisfaction prediction incorporating time gaps in
LSTM achieved 0.79 in f1-score. They used two sets, a la-
beled one from surveys and another set which was annotated
by three humans with a kappa of 0.51. They also showed
surveys often possess a positivity bias (Park, Cha, and Rhim
2018). Related spoken conversations were used considering
3 polarity values and turn-taking features extraction with
lexical and prosodic feature sets, achieving a F1-score of
0.85 (Chowdhury et al. 2016), while other work identified
turn-level and call-level estimations with joint biLSTM-RNN
with a macro f1-score of 0.710 (Ando et al. 2017).

Speaker Role in Dialogue. Speaker identification has been
used in dialog act detection in conversations, as a one-hot
encoded feature (Bothe et al. 2018), or a sequence of iden-
tifiers (Shang et al. 2020), for instance. However, speaker
role identification has mainly been seen has a task to solve
in call centers conversations, with two roles (client or agent)
on confidential data, with results achieving 93% in accu-
racy (Lavalley et al. 2010; Clavel et al. 2013). These works
considered linguistic patterns, but more recent ones tried to

integrate different speaker roles (receiver or sender) in multi-
turn dialogue representation (Liu et al. 2021a) or tackled
speaker role identification (air-traffic controller or pilot) us-
ing grammar rules in speech (Prasad et al. 2021). In our work,
we consider the common customer–agent speaker roles and
integrate this task in our approach to better detect problematic
conversations and problem resolution status.

Problem Resolution in Customer Service. While prob-
lem detection in interactions has been done using handcrafted
linguistic rules (Maslowski, Lagarde, and Clavel 2017), only
a few recent works try to predict problem resolution, and
none of them tried to predict it directly. Jain (2021) used in-
formation from the status of the problem resolution to check
its correlation with the polarity of customer sentiment; how-
ever, they did not try to predict this status directly. Chen
et al. (2021) created a dataset of customer service conversa-
tions and predicted the intent, considering constraints from
the agent guidelines. While this dataset contains information
about product flows, they do not try to predict it. Finally,
customer feedback on emotional support conversations has
been done, on related customer issues. While these issues are
not of the same nature as the ones we study in this paper, the
context is related. Once again, they do not try to predict the
status of the problem resolution, nor do they try to predict the
customer’s feedback (Liu et al. 2021b). Contrarily to these
previous works, we want to predict the status of the problem
resolution, and to the best of our knowledge, we are the first
to tackle this task directly.

Inductive Semi-Supervised Learning. In our work, we
take advantage of semi-supervised learning for transfer learn-
ing; also referred to as inductive semi-supervised learn-
ing (Shi et al. 2009; Zhou et al. 2018). Among recent in-
ductive semi-supervised learning approaches, there exist a
few which tackle sentiment analysis with weak supervision
on customer chat: Jain (2021) used weak labels to predict on
unlabeled data, using lexical feature based classifiers, before
fine-tuning a RoBERTa model (Liu et al. 2019) on it. Other
recent inductive semi-supervised learning approaches con-
sider either a task-adaptive pre-training (Howard and Ruder
2018) with discriminative fine-tuning, i.e. a different learning
rate for each layer, or a domain-adaptive pre-training (Konlea
and Jannidisa 2020; Wu et al. 2021). These methods have
been shown to be really effective to adapt language models to
a specific task before fine-tuning (Gururangan et al. 2020). In
this work, considering the small quantity of data we have ac-
cess to, we choose not to use adaptive pre-training, but rather
use the simple task of speaker role identification to improve
the detection of problematic conversations and the new task
of problem resolution status detection in customer service,
which can be viewed as adaptive fine-tuning. Pruksachatkun
et al. (2020) also defined an intermediate fine-tuning, using
complex intermediate tasks. Contrarily to their conclusion,
we show that in customer service context, a simple intermedi-
ate task can be sufficient to yield better results. On the other
hand, dummy tasks, along with synthetic data that mimics
the original, have been used in the intermediate fine-tuning
framework (Chang and Lu 2021).



3 Notations
Our dataset D is comprised of conversations
(C1, C2, . . . , C|D|), which are in turn made of utter-
ances: Ci = (u1, u2, . . . , u|Ci|). Each utterance possesses
a speaker role label a indicating whether it is from a
customer or an operator (which is obtained automatically
and does not need to be manually labeled). Utterances are
sequences of words uj = (wj

1, w
j
2, . . . , w

j
|uj |) concatenated

using the separator variable <s/>. Thus, we can represent
a conversation as a flattened list of words across utter-
ances: Ci = (w1

1, w
1
2, . . . , w

1
|u1|,<s/>, w

2
1, . . . , w

|Ci|
u|Ci|

).
Our dataset is divided in two parts: first, a subset
where conversations are labeled with problem status
p and satisfaction s. Hence, in this labeled subset
DL, each conversation comes with these two labels:
DL = ((C1, y

p
1 , y

s
1), . . . , (C|DL|, y

p
|DL|, y

s
|DL|)). The second

subset DU , unlabeled, is taken directly at the utterance level,
with each utterance being associated to their speaker role
label: DU = ((u1, y

a
1 ), (u2, y

a
2 ), . . . , (u|Du|, y

a
|Du|))

4 Tasks and Labels Definition
We will now explicit our 3 different labels and the tasks they
are associated to.

Conversation-level tasks. At the conversation-level, we
want to predict the status of the customer problem p, which
is one of 5 distinct labels from which the last 4 are used for
the request’s status classification:
• Aborted: the conversation is cut short (thus excluded from

the prediction task).
• Solved: the problem is solved. The operator gave the

expected information or solution to the customer.
• Test required: the operator gave steps to follow later on.

The customer needs to try this procedure.
• Out-of-scope: the customer’s issue cannot be tackled by

the operator. The latter can either redirect the customer
to another service, or simply indicate that this type of
request cannot be tackled.

• No solution: No solution is provided to the customer by
the operator, which cannot even redirect the customer to
another service.

We also predict the customer satisfaction s, which simply
consists in 3 discrete polarity values (−1, 0 and 1).

Utterance-level task. At the utterance-level, we will use
speaker role identification as a binary classification task be-
tween two roles: customer and operator.

5 Methodology
Our goal, in the context of customer service, is to work on two
target tasks: predict the customer satisfaction and identify the
status of their problem. Given the small quantity of labeled
data we have access to, we propose a dedicated approach for
semi-supervised learning for customer service conversations,
making use of our unlabeled data, but also the structural
information that is tied to it – in our case, the speaker role
labeling of the utterances.

Our method can be summarized by the following steps:
• (1) pre-train a language model on a general domain,
• (2) add a supplementary adaptive layer to this model,
• (3) train the resulting model on a simple task – predict the

labels a, using the data DU ,
• (4) freeze the initial model and fine-tune the adaptive layer

on the target task – predict the labels p and s, using the
data DL.

It can be seen as a mix between adding an intermediate
fine-tuning step using an appropriate secondary task (3), and
adding a supplementary adaptive layer (2), which would need
a supplementary pre-training step, with data from the appro-
priate domain. Hence, we name our model Task-Adaptive
Fine-Tuning (TAFT). As a supplementary help against our
lack of data, we adopt a multi-task approach: we simultane-
ously fine-tune our adaptive layer in the last step on both our
target tasks. As both tasks are correlated, we expect this to
improve results.

Figure 1 shows our TAFT approach in detail. The top half
of the figure represents step (3), in which we exploit the
speaker role identification task for simple intermediate fine-
tuning; indeed, this information is both always available in
customer service written interactions and anonymous, which
means customer service data almost always possess speaker
role labels. This step can be seen as both fine-tuning the
initial model and pre-training the adaptive layer, adapting it
to the domain.The bottom half shows step (4): once this step
is over, we keep the initial model, now adapted to the new
domain, unchanged, by freezing the parameters, and apply
the final fine-tuning on the adaptive layer with problem status
identification and customer satisfaction detection tasks.

Using an Adaptive Layer . One of the key points of our
method is the adaptive layer whose closest equivalent work
is the GAFL from computer vision to pre-filter image fre-
quencies (Shipitsin, Bespalov, and Dylov 2022). The purpose
of the adaptive layer is to serve as an intermediate, lighter
encoder, that will retain information about how to use the
output of the initial language model, but is separated from
it, which allows it to be fine-tuned independently afterwards.
Our reasoning is that the smaller size of the layer, relatively
to the initial model, will make fine-tuning easier – which is
important when data is scarce – with the added benefit of
having less parameters to train and a faster convergence.

Intermediate Fine-tuning on simple task. Our method
employs speaker role identification as intermediate fine-
tuning task; previously, this information has been used
through dedicated embeddings (Yuji, Tetsuya, and Yoshi
2022), or as additional parts of the model (Ghosal et al. 2019;
Bao et al. 2022). Our reasons are multiple: while these labels
are easily available and require no manual annotation, they
contain information about the data and its structure. But it is
especially important to note that this is a simple task, corre-
lated to the target tasks, by opposition with (Chang and Lu
2021): while recent work (Gururangan et al. 2020) suggests
to use a complex intermediate task, we make the hypothesis
something easy may allow the model to extract information
more reliably, given that here again, the quantity of data



Figure 1: Representation of our approach in two main steps. From left to right, starting with a Pretrained Language Model and
ending with a multitask fine-tuning for identifying the status of the customer’s problem and predicting the customer satisfaction.
The right-to-left arrows represent the backpropagation.

available is rather small. We also hypothesize that the initial
language model will not adapt too much to a task this simple,
which seems confirmed by how fast it converges to a very
high classification score (even without an adaptive layer).

Multi-Task Fine-Tuning of the Adaptive Layer. Since the
labels of both tasks have high correlation given their Jaccard
similarity (Jaccard 1912) (see Appendix A), we experiment
with fine-tuning with a multi-task classification objective,
where we choose the primary task to be the prediction of the
problem status p and the secondary task to be the prediction
of the customer satisfaction s, which, normally easier, should
help reinforce the performance of the primary task. We use
a cross entropy loss L(ŷ, y) = −

∑K
k y(k) log ŷ(k) for each

task and we combine them in a weighted sum:

L = 0.8× Lp + 0.2× Ls (1)

These weights were the best ones for a multi-objective
optimization (Sener and Koltun 2018) over the following
possible weight distributions: Lp0.8+Ls0.2, Lp0.6+Ls0.4
and Lp0.5 + Ls0.5.

6 Data
Our dataset D is made of around 6 thousand conversations
among which we labeled |DL| = 1, 500 conversations by
two annotators during one month. This leaves |DU | = 4, 383
conversations unlabeled, making the data to be used in a
semi-supervised manner small relative to what is usual in the
literature (Berthelot et al. 2019) but following the requirement
for the unlabeled data to hold useful related information (van
Engelen and Hoos 2020). However, it still represents approxi-
matively three times the labeled set. Additional data statistics
are shown in Table 1. The unavailability of public datasets
containing two levels of annotations as well as labels on prob-
lem resolutions implies that we are restricted to working on

Dataset DL DU

Language French French

Domain Customer Customer
Service Service

Source Real Data Real Data
Nb. Conv 1,500 4,383
Speaker Role Yes Yes
Customer Yes NoSatisfaction
Problem Status Yes No
Representation Conversations Messages

Table 1: Data statistics. Representation refers to how we
represent the data for each subset: as conversations for the
labeled set or as independent message for the unlabeled set
used during the intermediate fine-tuning – step (3).

our own confidential dataset, mandatory to apply our frame-
work on a customer service use-case. In DL, the distribution
of the different types of customer problems is the following:
249 aborted, 538 solved, 463 test required, 198 out-of-scope
and 52 no solution.

7 Experimental Protocol
We evaluate our approach by performing comparison of
our model with several baselines, which are standard Fine-
tuning, and two recent adaptation strategies from the litera-
ture: Domain-Adaptive Pre-training and Task-Adaptive Pre-
training.

Fine-Tuning (FT). First, we apply standard Fine-Tuning
(FT) on DL to predict labels p and s separately using only an
additional classification layer on top of the pooler layer of
the pre-trained language model.



Domain-Adaptive Pre-training (DAPT). We apply
DAPT (Konlea and Jannidisa 2020; Wu et al. 2021) with
the standard Masked Language Modelling (MLM) objective,
using the original BERT model masked/random tokens distri-
bution (Devlin et al. 2019): 15% of the tokens are selected,
among which 80% are replaced with the [MASK] token, 10%
with a random token, and 10% not modified. DAPT can be
summarized as follows: (1) pre-train the language model on
a general domain dataset (2) continue training with the MLM
objective on DU , not considering the labels a (3) fine-tune
the language model on the target tasks to predict p and s,
separately.

Task-Adaptive Pre-training (TAPT). We apply TAPT,
which is also called intermediate fine-tuning (Howard and
Ruder 2018; Gururangan et al. 2020) by simply fine-tuning
our language model twice, adding this intermediate fine-
tuning (with its own classification layer on top of the pooler
layer) before fine-tuning on the target task. Hence, we follow
Gururangan et al.’s implementation and use the following
process: (1) pre-train the language model on a general do-
main dataset (2) fine-tune the model on DU to predict the
labels a (3) fine-tune the model for the target tasks to predict
p and s, separately. TAPT can be seen as a trade-off between
the limited FT and the excessive run time of DAPT.

Task-Adaptive Fine-tuning (TAFT). We then apply our
approach, TAFT, with three different configurations. First,
we apply TAFT without multitask learning. This means that
contrarily to what is shown in Figure 1, where both the prob-
lem status p and the customer satisfaction s are predicted
together, we predict them separately and hence execute the
whole step (4) procedure twice. Secondly, we apply TAFT
without the adaptive layer. This means that, skipping step
(2), only the initial model is trained in step (3), and is not
frozen, but fine-tuned in step (4). Lastly, we apply TAFT
as originally described. During the multi-task fine-tuning
of our TAFT model, we select the best model based on the
weighted F1-score on validation set for the problem status
classification task. This, along with our choice of weights
in Equation 1, reinforces the ’primary’ role of this task, and
clearly directs our model towards favouring it.

Problem Status and Problematic Conversation. When
predicting the status of the problem p, we ignore the 249 con-
versations cut short (”Aborted” label), in order to avoid uni-
lateral or too short conversations, which cannot be exploited
for predicting the status of the problem p nor the satisfaction
s, and only consider the last four labels (described in Section
4). In the following, we name this task Status or Problem
Status. Besides, in order to allow us to check how efficiently
we can identify problematic conversation, we propose a sim-
plification of this task. We use a different mapping where
conversations with the ”Solved” and ”Test required” labels
are considered ”unproblematic”, while ”out-of-scope” and
”No solution” labels are merged together into a ”problem-
atic” label. This results in a binary Problematic Conversation
identification task, shortened as PC. In the following, each
configuration, whether it implies multi-task learning with the
satisfaction s or not, is tested with Status and PC.

Speaker role identification. During the intermediate fine-
tuning phase, we exploit all the unlabeled data without filter-
ing on conversation length. Indeed, speaker role information
is still available in any message and in this specific case,
we do not consider the conversational context. Thus, each
speaker role label ya is only associated to its utterance u,
which is hence taken in isolation and can be used to pre-train
the adaptive layer in step (3) of the TAFT procedure or to
fine-tune the language model in step (2) of the TAPT baseline
whatever the length of the conversation (the DAPT baseline
uses the same data as step (2), but without role labels).

Models and Hyperparameters. For our initial model and
baselines, we use the distilled version of a RoBERTa (Liu
et al. 2019) model for French, the CamemBERT model (Mar-
tin et al. 2020; Delestre and Amar 2022). The adaptive layer
is a transformer encoder (Vaswani et al. 2017) with a feed for-
ward dimension dff = 2048, a number of layers N = 1 and
a number of attention heads of 12. The number of attention
heads is chosen based on the self-attention block size dk and
the hidden dimension dh of the initial language model: dk/dh.
This adaptive layer is hence made of 16.5M parameters and
takes as input the last hidden state h−1 from the RoBERTa
model. In order to simplify its output for the classification
tasks, we add a pooler layer to only consider the [CLS] to-
kens representations and feed them to a linear layer with a
hyperbolic tangent activation function tanh(h−1W+b). The
adaptive layer is followed by a dropout layer with a droprate
of 0.5 in order to prevent an over-fitting of the model on the
different tasks. To first fine-tune the language model on the
speaker role identification task, we tried different hyperpa-
rameters, especially in regards to different batch size (16, 32)
and different learning rates (2e− 5, 5e− 6, 5e− 5). We set
the learning rate to 5e − 5 and the batch size to 16 while
fine-tuning on 4 epochs over the unlabeled set. While the
decay rate to the RoBERTa parameters is to 0.01, we lower
the decay rate for the adaptive layer to 0.001 but consider a
higher learning rate of 1e−4. This choice stems from the Dis-
tilCamemBERT model containing 68.1 million parameters
while the adaptive layer only contains 16.5 million param-
eters. We use the AdamW (Loshchilov and Hutter 2017)
optimizer to train both the language model and the adaptive
layer.

Unbalanced Strategies. We deal with a particularly small
and highly unbalanced dataset. To address this limitation
we implemented two different strategies : a pseudo episodic
batch strategy, and probability draws to balance the whole
dataset. The first strategy stems from the idea of episodic
composition to represent data (Ravi and Larochelle 2016),
often used in few-shot learning (Miller, Matsakis, and Viola
2000; Fei-Fei, Fergus, and Perona 2006; Lake, Salakhutdinov,
and Tenenbaum 2015). Usually, an episode is represented
by a combination of three parameters: samples (shots) per
class (way) to train from, and a set of samples per class to
predict on (queries). We adjust this composition by only
considering the number of samples to train from in order to
force a balanced representation of the classes during training.
We adopt the replacement strategy to draw samples, which
means some samples from the lowest represented class will



Strategy Satisfaction PC Status

P R F1 κ P R F1 κ P R F1 κ
B

as
el

in
es FT 49.09 47.20 43.07 0.19 52.77 52.83 52.68 0.05 45.02 50.38 44.37 0.28

DAPT 46.35 50.40 46.34 0.13 86.32 85.60 85.51 0.71 47.44 32.40 29.17 0.18
TAPT 47.22 52.33 46.34 0.13 73.82 71.23 70.69 0.43 33.85 44.34 38.09 0.25

O
ur

s TAFT noMTL 34.25 49.00 40.01 0.07 13.62 26.89 17.85 0.02 13.48 25.47 17.48 -0.01
TAFT noAdapt 67.74 59.38 57.47 0.41 63.17 56.60 49.98 0.13 49.01 40.09 36.00 0.22
TAFT 63.21 62.80 62.92 0.44 74.39 73.58 73.67 0.47 53.78 52.36 51.88 0.36

Table 2: Different strategies applied for three target tasks: customer’s satisfaction prediction (Satisfaction), Problematic Conver-
sation identification (PC), and Problem Status prediction (Status). Strategies include a fine tuning (FT) of DistilCamemBERT, a
Domain-Adaptive Pretraining (DAPT), a Task-Adaptive Pretraining (TAPT), and our Task-Adaptive Fine-Tuning (TAPT) with
or without Multi-Task Learning (noMTL), or without the adaptive layer (noAdapt). Each is evaluated using Precision, Recall,
weighted F1-score, and Cohen’s Kappa (κ) scores. Best scores are in bold, second best in italics.

be seen more often; moreover, this strategy leads to additional
hyperparameters, such as the number of episodes to draw
and the number of shots, which tend to require dedicated
algorithms (Snell, Swersky, and Zemel 2017; Guibon et al.
2021).The second strategy is to assign to each sample a draw
probability from a multinomial distribution weighted by the
label occurrence counts across the whole training set. This
creates less overlap than the episodic composition, without
required additional hyper parameters. Reported results refer
to this strategy.

8 Results
Intended outcome. Ideally, we want our model to reach or
outperform the Cohen’s κ scores obtained during the man-
ual annotation of the data, which only denoted moderate
agreement at the conversation level (Landis and Koch 1977):
the Cohen’s κ score computes the agreement score between
two annotators as κ = p(a)−p(r)

1−p(r) , taking into account the
agreement probability between two annotators p(a) and the
random agreement probability p(r). The annotation phase re-
sulted in κ = 0.76 for the polarity of the visitor’s satisfaction,
κ = 0.46 for the problem status, and κ = 0.55 for the prob-
lematic conversation label. Table 2 shows the overall results
we obtained in regards to precision, recall, weighted f1-score
and Cohen’s κ score: to compare models, we compute this κ
score between the predicted values Ŷ and the gold values Y
as indicated by κ in Table 2.

Baselines Performance. Our baselines are a standard fine-
tuning (FT), domain-adaptive pre-training (DAPT) and task-
adaptive pre-training (TAPT); we evaluate them on customer
satisfaction (Satisfaction), problematic conversation detec-
tion (PC) and customer problem status (Status). First, the
fine-tuning shows very limited results on the Satisfaction
and PC tasks; however, it achieves the second best on Status
prediction with 44.37 in weighted F1-score. Secondly, DAPT
does not outperform the fine-tuning on Status prediction but
outperforms all the other approaches on detecting problem-
atic conversations (PC). Since it achieves very poor results
compared to the other baselines in the other tasks, we believe
this is due to an interaction between the complexity of the

tasks with the quantity of available data: DAPT is not able to
extract sufficient information from DU for the more complex
labels. TAPT yields results equivalent to DAPT on customer
satisfaction classification, which is the expected result – as
one of the main purposes of TAPT was to reduce the compu-
tational cost of DAPT (Gururangan et al. 2020). Even though,
κ scores are slightly improved by TAPT. Still, it is far be-
hind DAPT on problematic conversation identification with a
F1-score of 70.69. This seems to reinforce the intuition that
TAPT is mainly useful for more complex tasks, by mean of
its efficiency: the Masked Language Modelling process of
DAPT induces a far higher training cost compared to TAPT
which requires more data for simpler tasks. Still, both TAPT
and DAPT come short when it comes to complex tasks for
which data are scarce.

TAFT Performance. Our Task-Adaptive Fine-Tuning
method (TAFT) outperforms both those baselines on Problem
Status prediction by reaching 51.88% in f1-score, and on the
Customer Satisfaction task with 62.92% in f1-score. This
means our approach improves by 16 points on satisfaction
and 7 points on status prediction. Status prediction being
seemingly the most difficult task, our TAFT method reaches
a satisfactory trade-off between the computational cost of
DAPT and the efficient adaptation of TAPT. On the problem-
atic conversation identification task, however, DAPT really
outperforms all the other strategies and our TAFT approach
only achieves the second best score, 12 points behind DAPT,
but still 3 points above the TAPT. This strengthens the in-
tuition that our TAFT approach is better suited for complex
tasks when data is scarce. On Status prediction, our model
still shows important flaws in predicting the positive satis-
faction values along with the ”No Solution” class (see Sec-
tion 4). As we make sure data representation is approximately
balanced (see Section 7), this may arise from the extreme
definition of this specific label. Table 3 shows the exact same
pattern on the Status prediction where we can see our model
better predict clear opposite labels (”Solved”, ”No Solution”)
while struggling to predict more subtle ones (”To be tested”,
”Out-of-scope”). On the other hand, TAFT yields symmetric
patterns between Precision and Recall scores while identify-
ing Problematic Conversations (Table 3). On a side note, all



the models achieve really high results (approximately 93% in
f1-score) for the speaker role identification task during their
respective pre-training phase.

Improvements from Multi-Task Learning In Table 2
we indicate the absence of target multi-task fine-tuning as
”noMTL”. It turns out the use of multi-task fine-tuning is an
essential part of the performance of TAFT, as results for indi-
vidual fine-tuning are very poor. This means the fine-tuning
of the adaptive layer requires correlated tasks (Appendix A)
to better transition from the adapting to the domain (step 1
in Figure 1) to adapting to the task (step 2 in Figure 1). The
multi-task fine-tuning in TAFT has the added benefit to allow
the model to have a better balanced performance: no problem
status is completely ignored , contrary to DAPT and TAPT.

Improvements from the Adaptive layer. In Table 2 we
indicate the absence of an adaptive layer with ”noAdapt”.
Removing the adaptive layer but keeping the exact same
process yields lower results on all the 3 tasks, and all metrics.
This verifies the importance of the adaptive layer in our TAFT
approach and shows that the adaptive layer enhances the
adaptation process of the model – combining both domain
and task adaptation at once.

TAFT Benefits. Overall, compared to the performance
given by a random choice (0.25), the intended outcome
(k = 0.46), and those three baselines, our model yields
better results on the Problem Status prediction task. Even
though, a lot of improvements are still required as the abso-
lute score remains low. Compared to DAPT, our model is
more efficient during the fine-tuning phase, as it trains on
16.5M parameters instead of 68.1M parameters. We think
this is where our TAFT shines, by leveraging the relatively
small unlabeled data in a more efficient manner. While most
semi-supervised approaches can rely on a large quantity of
unlabeled data, in our use case, where even unlabeled data
is scarce, TAFT yields the best results compared to other
inductive semi-supervised baselines.

9 Limitations
While our approach yields improvements, it has several lim-
itations. The first is found in the nature of the problem sta-
tus labels. These labels cannot simply be mapped to lexical
features, representing specific topics, as there is a need to un-
derstand the evolution of a certain problem that the customer
faced. Another possible labeling scheme would be to divide
the Status into two sub-labels: the type of the problem, and
its status. However, due to the cost of annotating, we chose to
keep labels simple. The second limitation of our work is the
use of a distilled version of RoBERTa for French. Even if we
obtained few to no improvement from using the full Camem-
BERT model, other types of language models could be used
in the TAFT approach. This has yet to be tested. Finally, the
quantity of available data is obviously a big limitation in
further experimenting with our model. It is a limitation that
is inherent to our use-case of customer service – as are the
difficult problem status labels. As often in customer service,
the data is confidential and we are not able to share what

P R F1

Problem Status

Solved 60.56 60.56 60.56
To be tested 58.33 30.43 40.00
Out-of-scope 36.67 46.81 41.12
No Solution 56.14 66.67 60.95

Weighted Avg 53.78 52.36 51.88
Standard Dev. 04.00 04.00 04.58

Problematic Conversation

Not Problematic 67.59 77.66 72.28
Problematic 79.81 70.34 74.77

Weighted Avg 74.39 73.58 73.67
Standard Dev. 03.19 03.19 03.19

Table 3: TAFT scores per category on the Problem Status
prediction and problematic conversation identification tasks,
with their standard deviation over 5 test runs.

we used in our experiments. However, the source code with
dummy data is available at https://gguibon.github.io/taft.

10 Conclusion and Perspectives

In this paper, we presented a new inductive semi-supervised
approach dedicated to datasets in which both the labeled
and unlabeled subsets are relatively small. This approach is
tested in a customer service use-case, on conversational data,
leveraging speaker role information from the unlabeled set
in order to better adapt the model to the target tasks, that are
to predict customer satisfaction and identify the status of the
customer problem – which we are the first to tackle.

Our Task-Adaptive Fine-Tuning approach achieves en-
couraging results compared to other recent inductive semi-
supervised methods. Using a supplementary adaptive layer,
it eases the adaptation of a pre-existing model to the task, in
a two-steps process: first, both adapting the model to the new
domain, and tying it to the new layer, and second, fine-tuning
only the new layer to the target tasks. Additionally, multi-
task training during that second step is an essential part of the
model performance. In particular, our model outperforms
baselines on the problem status task, showing that progress
can be made on predicting complex labels even when data is
very scarce. With this adaptive layer, our approach requires
substantially less parameters to be trained during the final
fine-tuning, and thus, while it combines aspects from task-
adaptive and domain-adaptive fine-tuning, it yields a more
efficient procedure than both. However, when we choose
to simplify our target task to only identifying problematic
conversations, our approach achieves competitive results but
stays behind a pre-existing domain-adaptation strategy.

In the future, we plan to further improve problem status
prediction by using argument mining mixed with sentiment
analysis to identify the nature of the problem before its status,
making it a two-step classification process.
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A Labels Correlation
In order to better understand the advantage of the multi-task
setting in our use-case, we calculated the Jaccard similar-
ity score (Jaccard 1912) between the customer’s satisfaction
(shorten as Satisfaction) and the problem related labels: the
problematic conversation (PC) and the status of the problem
resolution (Problem Status). To obtain an indication of the
correlation between these labels, we selected the Jaccard sim-
ilarity as it is suitable for binary vectors (Zhang and Srihari
2003).

Figure 2: Jaccard similarity scores between customer’s Satis-
faction and problematic conversations (PC)

Figure 2 shows the correlation between the Satisfaction
and PC labels, and emphasizes how problematic conversa-
tions are strongly correlated to negative customer’s satisfac-
tion. However, conversations that are not problematic are
correlated to positive satisfaction but in a lesser value.

Figure 3: Jaccard similarity scores between customer’s Satis-
faction and Problem Status

On the other hand, Figure 3 highlights the strong relation

between negative satisfaction and problem resolution status
that are either ”out-of-scope” or deprived of any solution (”no
solution”). Moreover, ”Solved” and ”to be tested” statuses
are almost evenly linked to customer’s satisfaction. This may
give an hint about the weaker Precision score obtained by our
TAFT model on ”Not Problematic” conversations.

B Satisfaction Labels
Satisfaction labels indicated in the paper are polarity scores
obtained by merging more fine-grained satisfaction scores
into 3 polarity values. We define the fine-grained satisfaction
values as follows:
-3 Very dissatisfied: without any doubt, the customer is

not satisfied at all by the interaction. Usually, anger or
frustration are explicit. This value is associated to a strong
negative emotion expressed.

-2 Dissatisfied: the customer is dissatisfied by the interaction,
no solution suited the customer.

-1 Mildly dissatisfied: the customer’s dissatisfaction is mod-
erate but surely present.

0 Neutral: it is impossible to detect a satisfaction level
(aborted conversations are such example).

1 Mildly satisfied: can be explicit or implicit. For instance,
the customer can simply agree to the operator’s proposi-
tion.

2 Partly satisfied: the customer’s issue is partly solved and
the customer still seems satisfied by the interaction.

3 Completely satisfied: the customer is satisfied by the
interaction and all the issues have been solved.

These fine-grained labels did not assist the model to better
predict problematic conversations nor problem statuses. Thus,
we did not report these scores in the paper.

C Hardware Information and Computation
Time

We conducted all our experiments on the following hardware
specifications: a 24-core EPYC AMD processor, 377 Gb of
RAM, an Nvidia Tesla V100 GPU with 32GB of RAM run-
ning Cuda 11.2. Models are implemented using the PyTorch
and PyTorch-Lightning libraries with the help of the Hugging
Face library to load pretrained language models.

Training our TAFT model required ∼ 4 minutes per epoch
for the first phase using speaker role prediction (Step 1 in
Figure 1, then only ∼ 1 minute per epoch for the second
phase of multi-task fine-tuning (Step 2 in Figure 1). This
decrease in required time between the two main steps is
essentially due to the language model being frozen on the
second step. Overall, with the number of training epochs, the
total amount of time is around 1 hour 30 minutes on this
hardware.

The relatively low required training time is essentially
linked to scarce data and thus to the small dataset size of
∼ 6 thousands conversations (See Table 1). As such we did
not use early stopping and only kept the model with the
best validation F1-score on the problem related task (PC or
Status). However, a larger dataset may require the use of early
stopping.


