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A B S T R A C T

Detecting emotions in a conversational context benefits several industrial cases such as customer service, user
appraisal from speech recognition, and so on. However, in most cases, research data differ from real data due
to them being private, confidential, or difficult to label. In this work we present ProtoSeq, an adaptation of
the Prototypical Networks to enable dealing with sequences in a few-shot learning way, reducing the need for
labeling confidential data.
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1. Introduction

One limitation of current deep learning methods is the availability
of datasets to train predictive models. In the industrial area, companies
often face this problem because they deal with confidential data such
as medical data, security-related data, or private communication data,
to name but a few. To get around this difficulty, new approaches
emerged trying to alleviate the data size dependency by considering
transfer learning [1], semi-supervised learning [2], meta-learning [3],
or few-shot learning (FSL) [4] for instance. In this work, we focus
on recognizing emotions in conversation in the context of private
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communication data by adapting a well-known metric-learning based
meta-learning framework commonly used for few-shot learning: the
Prototypical Networks [5]. We present a variation of Prototypical Net-
works dedicated to sequences, that we name ProtoSeq. In its core,
ProtoSeq consists of Prototypical Networks [5] along with an episodic
training framework [6] both adapted to enable sequences of data.

By sharing the ProtoSeq, we seek to encourage the field of Emotion
Recognition in Conversation to consider the use of FSL, as opposed
to all the studies using supervised learning [7–10] which make the
implicit assumption that a right amount of data will be available.
Moreover, with ProtoSeq we first present this approach on a text
https://doi.org/10.1016/j.simpa.2022.100237
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Fig. 1. Architecture of the ProtoSeq model: from the input FastText [15] static embeddings to the CRF layer. Each part is linked to the related code in the reproducible capsule.
The global training function is located in code/train/regular.py.

Fig. 2. Episodic training framework for sequences: an example episode (2-shots,
-ways). Conversation labels are inferred from utterance (𝑢) labels. Label = emoji.

odality, but share the framework in order to make it easily adaptable
o different modalities such as speech or vision, the latter from which
he original Prototypical Networks [5] stems from.

. Description

ProtoSeq can be divided into two main parts: the model and the
raining framework. The model uses a hierarchical encoder based on
onvolutional networks (CNN) [11] for utterance encoding and Bi-
irectional Long–Short Term Memory networks (BiLSTM) [12] to ad-
ust utterance representations with their surrounding context. This
tems from recent works on sequence labeling in dialog and emotion
ecognition in conversation [7,13]. With the combination of an addi-
ional Multi-Layer Perceptron (MLP) and a Conditional Random Fields
CRF) [14] layer, ProtoSeq allows sequence labeling using a two-step
rocess (overview in Fig. 1): (1) an order-aware labeling using the
ncoded utterance distances from the class prototypes (from input to
rototypes-Utterance Distances in Fig. 1); (2) a global context-aware
equence labeling using a CRF [14] layer to fine-tune the previous step
the last layer – CRF – in Fig. 1). We also apply and share an adapted
pisodic training framework [6] dedicated to sequences, where the
umber of instances per class for training is conditioned by the presence
f at least one utterance with the relevant class in the sequence. To train
he model, we generate a set of random episodes (replacing batches
nd reproducing the context of a few training examples) with a fixed
umber of random examples (shots) for each class (way) to train, and
redict on a fixed number of elements (queries) to compute the cross
ntropy loss. Fig. 2 shows a training episode’s shots and ways for
equences.

Considering those two main features, we introduce the ProtoSeq
through a public PyTorch implementation. The software base structure
is inspired from [16] but extends it in order to incorporate multiple
sub-structures such as few-shot and supervised learning tasks in a more
separated way. Hence, our adapted episodic strategy (see Fig. 2) can
be found in code/dataset/parallel_sampler_seq.py while
Bao’s [16] implementation of Larochelle’s [6] episodic strategy, the
original version for non-sequences, can be found in
code/dataset/parallel_sampler.py.
Data Utilities. Our ProtoSeq’s PyTorch implementation expects data
in JSON lines format. Each line should be a JSON object representing
a conversation. We have opted for this format over Pandas1 due to
the hierarchical nature of the data. By default, we present an exam-
ple usage on a textual conversation dataset [17] for which we share
our custom parser data/parser_gg.py. By sharing this parser, we
share another way to handle this data, which can also be used to format
data from the Datasets library.2 We also share the function dedicated to
data preprocessing creaDailyDialogSeq() in emotionClf.py,
along with the unique fully parsed and preprocessed data. An option
is dedicated to reproduce it: python3 emotionClf.py --task
prepa_dataset.
Additional Implementations. When comparing existing supervised
approaches used in emotion recognition in conversation, the public
KET [9] implementation3 dropped from 53.37% to 41.43% in micro
F1-score when applied on our private confidential dataset. We tried to
measure it for CESTa, but found no available public implementation.
Thus, we share our personal CESTa implementation4 that we made from
scratch by following the original paper’s instructions. However, it did
not yield good results neither on our private confidential dataset [18]
nor on DailyDialog [17], which seems to contradict the original paper’s
results. As far as we know, this is the only available implementation
of CESTa, this is why we share it to prove this did not work on our
specific data, but also to allow possible improvements from the research
community, which can re-apply it or modify it.

Our reproducible capsule also comes with several ProtoSeq variants
that the user can trigger to try different encoders from a simple average
of input representations to multiple Transformer [19] encoder layers.

3. Impact

With ProtoSeq, we wish to offer an example solution to deal with
data privacy shortage and have an indication of the differences in per-
formance. Most conversational data are private, unlabeled, and differ

1 https://pandas.pydata.org/.
2 https://huggingface.co/datasets/daily_dialog.
3 https://github.com/zhongpeixiang/KET.
4 Available in code/classifier/cesta.py with inline comments.
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from the available research datasets. Hence, we seek to encourage the
research field to consider the use of few-shot learning for this task by
sharing ProtoSeq, which achieves 31.81% in micro f1-score (excluding
the majority class) compared to 26.07% for WarmProto-CRF, another
FSL method for sequence [18,20]. In our implementation, default data
is expected to be hierarchical textual data (nested lists of tokens).
However, it can be modified to handle any kind of data as the model is
not restricted to textual data. It can be used for other modalities as long
as the properties (hierarchical sequences) are met. Even if we restrict
ourselves to the scope of Natural Language Processing and, more pre-
cisely, to Sentiment Analysis and Emotion Recognition, multiple other
tasks are still available: named entity recognition, speaker’s speech
pattern recognition, part-of-speech tagging, for instance. ProtoSeq is
designed to be used for private data where only a few labeled examples
are available. Moreover, it is the first software on few-shot emotion
recognition in conversation, which makes it a pioneer in this research
sub field. This is why this work is motivated by both academic and
industrial objectives and we expect it to make this research field lean
towards real data usage with performance comparison to artificial
(hence shareable) data, instead of only comparing performance on the
latter. This software aims at sharing a baseline for other studies to
compare from directly or indirectly [21]. To do so, we make the code
easy to reuse.

4. Current limitations

The two parts of the ProtoSeq each have one limitation. Firstly, the
adapted Prototypical Networks possess a final CRF layer which over-
writes the order information from the previous hierarchical encoder.
This means, even if the order is used to determine the representations,
the sequence labeling phase ignores it almost completely at the end.
Secondly, the adapted episodic setting yields a variable number of
utterances per class. This means the strict balance between classes from
the standard episodic strategy [6] is lost due to the variable number of
instances per external classes in a sequence.

5. Conclusion and future improvements

In this work we present ProtoSeq, the first application of few-
shot learning for emotion recognition in conversation with the hope
of promoting the need of such approach in this task. This software
stems from the industrial context where we do not have access to
enough data due to privacy limitations. ProtoSeq is made of both a
hierarchical model and a training framework for which we will try to
lessen the inherent limitations in regards to element order overwriting,
and variable number of utterances in the episodes.
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