Analyse syntaxique de l’ancien français : quelles propriétés de la langue influent le plus sur la qualité de l’apprentissage ?

Abstract

L’article présente des résultats d’expériences d’apprentissage automatique pour l’étiquetage morpho-syntaxique et l’analyse syntaxique en dépendance de l’ancien français. Ces expériences ont pour objectif de servir une exploration de corpus pour laquelle le corpus arboré SRCMF sert de données de référence. La nature peu standardisée de la langue qui y est utilisée implique des données d’entraînement hétérogènes et quantitativement limitées. Nous explorons donc diverses stratégies, fondées sur différents critères (variabilité du lexique, forme Vers/Prose des textes, dates des textes), pour constituer des corpus d’entrainement menant aux meilleurs résultats possibles.

Publication
In 22ème Traitement Automatique des Langues Naturelles (TALN)
Gaël Guibon
Gaël Guibon
Associate Professor

My research goes from emojis and emotion prediction and recommendation to meta learning, few-shot learning and French lexical evolution studies.

Related