OFrLex: A Computational Morphological and Syntactic Lexicon for Old French

Abstract

In this paper we describe our work on the development and enrichment of OFrLex, a freely available, large-coverage morphological and syntactic Old French lexicon. We rely on several heterogeneous language resources to extract structured and exploitable information. The extraction follows a semi-automatic procedure with substantial manual steps to respond to difficulties encountered while aligning lexical entries from distinct language resources. OFrLex aims at improving natural language processing tasks on Old French such as part-of-speech tagging and dependency parsing. We provide quantitative information on OFrLex and discuss its reliability. We also describe and evaluate a semi-automatic, word-embedding-based lexical enrichment process aimed at increasing the accuracy of the resource. Results of this extension technique will be manually validated in the near future, a step that will take advantage of OFrLex’s viewing, searching and editing interface, which is already accessible online.

Publication
In Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)
Gaël Guibon
Gaël Guibon
Associate Professor

My research goes from emojis and emotion prediction and recommendation to meta learning, few-shot learning and French lexical evolution studies.

Related