In this paper, we present our method, TAFT, to enhance model adaptation both on domain and task especially for small datasets. To demonstrate it we consider the use-case of customer service chats.
In this paper, we present EZCAT, an easy-to-use interface to annotate conversations in a two-level configurable schema, leveraging message-level labels and conversation-level labels at once.
In this work, we place ourselves in the scope of a live chat customer service in which we want to detect emotions and their evolution in the conversation flow. This context leads to multiple challenges [...]
In this paper, we place ourselves in a classification scenario in which the target classes and data type are not accessible during training. We use a meta-learning approach to [...]
Dans cet article nous reproduisons un scénario d'apprentissage selon lequel les données cibles ne sont pas accessibles et seules des données connexes le sont. [...]
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum.